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Abstract

In this paper, we solve three ladders-walls problems. The one ladder problem is a typical

first year Calculus problem, see [3],. The extension to more ladders and walls using Lagrange

Multipliers was discussed in [1], but the calculations were complex. A simplier solution to two

ladders-walls problems were discussed in [2]. In this paper, we discuss the three ladders-walls

problems and the extensions with the help of Dynamic Geometry and Computer Algebra System.

1 Introduction

In practical terms, consider three parallel walls of with given constant heights h1, h0, h2 ≥ 0 standing

on level ground given distances d1 ≥ 0 and d2 ≥ 0 apart. The task is to use three ladders (connected

end to end) of combined minimum length to build a bridge over the three walls. Each ladder is

assumed to have negligible thickness, and each is allowed to be vertical, in particular to be coincident

with a wall. In mathematical terms, the problem is to find the shortest polygonal path in the upper half

plane that consists of at most three line segments, which starts and ends on the rays I1 = (−∞,−d1)×
{0} and I2 = (d2,∞) × {0}, and which does not transversely intersect any of the line segments

{−d1} × [0, h1), {0} × [0, h0), and {d2} × [0, h2). Any polygonal path that satisfies these conditions

will be called admissible, and the task is to find the admissible paths of minimum total length.

It is intuitively clear that for any given data it is always possible to bridge all three walls by using

only two ladders, and that by using a third ladder of nonzero length one always can obtain a strictly

smaller minimum for the combined length: One ladder must be non-vertical and have one end on one

of the ground, (without loss of generality) at (x1, 0) ∈ I1 and the other end at (ξ1, η1) ∈ R2 with

η1 > 0 and ξ1 > x1.
It is immediately clear that for any t ∈ (x1,min{d1, ξ1}) one obtains a better (shorter) bridge by

replacing the segment from (x1, 0) to (t,
t− x1
ξ1 − x1

η1) by a vertical ladder from (t, 0) to (t,
t− x1
ξ1 − x1

η1).

Thus one may expect that commonly the optimal three ladder solution might include a vertical ladder

on one side.
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This article investigates the dependence of the optimal solution on the given parameters, and, in

particular, whether for every set of strictly positive parameters di and hi the optimal solution always

includes one vertical ladder. This article is motivated in part by familiar optimization problems in

calculus texts that involve one ladder such as in [3], and problems were extended by the article using

Lagrange Multipliers in [1]. The article [2] analyzes a two ladders and two walls using different

approaches. This article is a generalization of [2], and it suggests one possible way to rephrase a

generalized n-ladder-n-walls problems as a dynamic programming problem.

The first part of the article, in section 2, employs the Computer Algebra System MAPLE to

analyze the problem, using a combination of symbolic and numeric techniques. The key innovation is

to cast the multi-parameter optimization problem as nested one-dimensional optimization problems.

The first of which is easily solved in closed form using computer algebra. Its solution is then passed

to the next one-dimensional problem, which then is more naturally analyzed numerically for specific

numeric data for the parameters di and hi. This use of computer algebra to reduce the complexity of

the problem is critical for a successful analysis, and is a clear improvement over directly attacking

typically a two dimensional optimization problem with five parameters (four after normalization).

The second part of the article, in section 3, is to deal with a special case when one outside ladder

is vertical, the middle ladder is resting on the tip of the middle wall and the wall with the vertical

ladder, we are asking where to place the last grounded ladder when we vary the height of the last wall

and the distance between the last and the middle walls.

2 Analysis using computer algebra

2.1 Definitions and preliminary arguments

Consider the labeling of the following diagram with vertical walls standing at A′ = (−d1, 0), E ′ =
(0, 0), and D′ = (d2, 0) whose tops are located at A = (−d1, h1), E = (0, h0), and D = (d2, h2)
respectively. We assume that all di, hi are strictly positive – the degenerate cases are elementary.

Figure 1

The three ladders are connected end to end and define the polygonal path connecting P =
(−x1, 0), B = (ξ1, η1), C = (ξ2, η2), to Q = (x2, 0).
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The problem requires that

x1 ≤ −d1 and x2 ≥ d2. (1)

Arguing similarly as in the introduction, it is clear that if ξ1 < −d1 or ξ2 > d2, then the corre-

sponding path cannot be optimal. In order to be admissible the path must be such that each of the

outside ladders either clears the outside wall or rests on top of it.

η1
ξ1 − x1

≤ η1 − h1
ξ1 + d1

and
η2

x2 − ξ1
≤ η2 − h2
d2 − ξ2

(2)

In the case of strict inequality, it is clear that by holding the point (ξi, ηi) fixed and moving the

foot (xi, 0) closer to the wall one obtains another admissible path with shorter total length. Hence it

is clear that for any optimal solution equality must hold in each equation, i.e.

η1
ξ1 − x1

=
η1 − h1
ξ1 + d1

and
η2

x2 − ξ1
=
η2 − h2
d2 − ξ2

(3)

Regarding the middle wall and middle ladder there are numerous possible scenarios. In the case

that the top E = (0, h0) of the middle wall does not lie above the line connecting the tops A =
(−d1, h1) and D = (d2, h2) of the outside walls, it is immediate that the optimal solution consists of

the polygonal path made up of two vertical ladders A′A and D′D connected by the middle ladder AD
resting on the tops of the outside walls. Thus henceforth we assume that the top E of the middle wall

lies strictly above the line segment AD which is equivalent to the inequality

h0 − h2
d2

<
h0 − h1
d1

. (4)

We argue that (under this assumption) in any optimal solution the middle ladder must rest on the

top of the middle wall. We first need to rule out the case that ξ1ξ2 > 0. Thus suppose (without loss

of generality) that ξ1 < ξ2 < 0. Keeping the left endpoint B = (ξ1, η1) unchanged, it is clear that a

shorter path is obtained by replacing the point C = (ξ2, η2) where the middle and the third ladders

connect by the new point C̃ = (0, x2
x2−ξ2η2). Pictorially, the middle ladder is lengthened and rotated

about its left end point, and the right ladder is only shortened. Hence that operation does not affect

any of the other inequality constraints that the right ladder must satisfy.

Thus henceforth we assume that

− d1 ≤ ξ1 ≤ 0 ≤ ξ2 ≤ d2. (5)

Finally we note that if the middle ladder lies strictly above the top of the middle wall, then a shorter

overall solution can be obtained by using by lowering it and lengthening it: for example, as above

rotate the middle ladder about its left endpoint while simultaneously lengthening it and shortening the

right ladder, in other words, increasing ξ2. Thus we only need to consider the case when the top of

the middle wall E = (0, h2) lies on the line segment connecting B = (ξ1, η1) and C = (ξ2, η2). This

is equivalent to the equality

h0 − η1
−ξ1

=
h0 − η2
ξ2

. (6)
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2.2 The optimization problem and solution strategy

For any fixed set of strictly positive parameters h1, h0, h2, d1, d2 > 0 that satisfy the concavity con-

straint (4) the objective is to minimize the length of the polygonal path PBCQ subject to the above

inequality constraints (1), (5), and equality constraints (3) and (6). Initially the path involves the six

variables x1, x2, ξ1, ξ2, η1, η2. But the equality constraints (3) and (6). allow on to reduce the problem

to three variables, and one has many choices.

Using the invariance of the problem under scaling, one may fix one of the parameters, e.g. the

height of the middle wall h0 = 1 and is left with the problem of minimizing a four-parameter family

of scalar functions of three variables. Assuming that one knows that one of the outside ladders in an

optimal solution must be vertical, one still has for every fixed choice of parameters di and hi a two

dimensional optimization problem that may be explored or solved numerically.

A much simplifying choice for an analytic exploration and solution using computer algebra is to

focus on the slope of the middle ladder as the main variable of interest

slope m =
η2 − η1
ξ2 − ξ1

=
η1 − h0
ξ1

=
η2 − h0
ξ2

(7)

Arguing analogously to the preceding section it is easy to see that this slope m must, in any optimal

solution, satisfy the inequalities

h2 − h0
d2

≤ m ≤ h0 − h1
−d1

. (8)

Else the polygonal path between the walls would have a piece that is not concave, and as before could

be shortened. For simplicity, we denote

mmax =
h0 − h1
−d1

, and mmin =
h2 − h0
d2

. (9)

The key idea in our solution is to consider this slope m an additional parameter, and consider two

decoupled parameterized families of one-dimensional optimization problems: For parameters di and

hi, and an additional parameter m minimize the lengths of each of the paths π1 = PBE and π2 =
EDQ. That is for given m satisfying (8) find an algebraic expression for the optimal choices of

x1, ξ1, η1 and x2, ξ2, η2, respectively. Due to the equality constraints (3) and (6) each member of

either triple determines the other two. The particular choice seems to make little difference – maybe

choosing the slopes of the outside ladders would be a more consistent choice, but as the accompanying

MAPLE worksheet demonstrates, the location xi of the bottom end of the outside ladders makes is

both practical and convenient.

In summary, the strategy is to find the optimal choices x∗i (m) that for given slope m minimize the

lengths of the paths πi. In the sequel minimize the sum of these two paths over the slope m.

2.3 Optimizing outside ladders for given middle slope

This section summarizes the main formula and results for the parametric one dimensional optimiza-

tion problems for the outside ladders for any given slope of the middle ladder. Details of the calcu-

lations are available in the accompanying MAPLE worksheets, see [10,11]. The length of each half

path πi
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si = Length(πi) =
√
η2i + (ξi − xi)2 +

√
(h0 − ηi)2 + ξ2i (10)

can be expressed as a function of a single scalar variable xi using the equality constraints (3) and (6).

In the sequel we only list the results for the left half i = 1, the results for the right side are analogous

except for a minor change in notation due to our choice of naming the x-coordinates of the bottoms

of the outside walls −d1 and +d2.

s1 =
√
(−h0x1 + h0d1 + h1x1)2(m2 + 1)/(mx1 −md1 + h1)2 (11)

+
√
((x21 − 2x1d1 + d21 + h21)(mx1 + h0)2/(mx1 −md1 + h1)2 (12)

Using elementary calculus, it is straightforward, but forbiddingly tedious by hand, to calculate the

derivative of s1 as a function of x1 and solve for its roots. Using computer algebra, these are returned

as the roots of a quartic polynomial whose coefficients are quadratic polynomials in m.

x∗1(m) = RootOf(m
2Z4 + (−4d1m+ 2h1)mZ3 (13)

+ (6d21m
2 − 4d1h1m+ (2h0h1 − h21))Z2

+ (−(4d31 + 2d1h21)m2 + (2d21h1 − 2h21h0 + 2h31)m− 4h0d1h1)Z
+ (h21d

2
1 + d41)m

2 + (2h0h1d
2
1 − h20h21 − d21h21 − h41 + 2h0h31))).

For any given numerical values for admissible parameters di, hi, the computer algebra system easily

evaluates the quartic polynomial and its the roots as functions of the slope m. It takes only little

manual intervention to select the real roots, and among these, the ones which satisfy the constraints.

Of particular interest is the question: when is the function s1 monotone on the admissible interval.

Recall the concavity requirement that the left ladder have a slope that is not smaller than the slope

m of the middle ladder, i.e. h1
−d1−x1 ≥ m together with the basic hypothesis x1 < −d1 restricts the

domain of interest of s1 to the interval

d1 −
h1
m
≤ x1 ≤ −d1. (14)

We recall from (9) that the largest slope for the middle ladder is denoted bymmax, which occurs when

the middle ladder connects the tops of the left and middle walls; in such case, we have left vertical

ladder. Similarly, we denote mmin by the smallest slope for the middle ladder when the middle ladder

connects the tops of right ladder and middle ladder or we have right vertical ladder. We observe

x1min = d1 −
h1
mmax

=
h0d1

h0 − h1
, and x1max = −d1. (15)

The optimal solution is a critical point of s1 inside the interval (x1min, x1max), or is attained at one of

the endpoints if s1 is monotone on this interval. The endpoint minimum x∗1 = x1min corresponds to

the left ladder resting on top of the left and middle walls, (ξ1, η1) = (0, h0) or B = E. The endpoint

minimum x∗1 = x1max = −d1 corresponds to the middle ladder resting on top of the left and middle

walls, (ξ1, η1) = (d1, h1) or A = B, and the left ladder vertical. Analogous to (15), we have

x2min = d2, and x2max =
h0d2

h0 − h2
. (16)
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The following identities are helpful in Examples 1 and 2. For B = (ξ1η1), and C = (ξ2η2), we have

ξ1 =
−h0x1 + h0d1 + h1x1
mx1 −md1 + h1

, (17)

ξ2 =
−h0x2 + h0d2 + h1x2
mx2 −md2 + h2

, (18)

η1 =
h1 (x1 − ξ1)
x1 − d1

, and (19)

η2 =
h2 (x2 − ξ2)
x2 − d2

. (20)

A particularly nice animation shows for each admissible value of the slopem of the middle ladder,

the suboptimal constellation of three ladders that optimizes the lengths of both the half-polygons π1
and π2. See the accompanying worksheet [10] for details.

2.4 One outside ladder must be vertical

Consider the three ladders-walls diagram of Figure 2(a) :

Figures 2(a) and 2(b). One outside ladder should be vertical.

Without loss of generality, we assume the heights of two outside walls are not equal (h1 6= h2).
Furthermore, we assume DH > HF or |d1| > d2. We consider two cases, first we have a left vertical

ladder onCD and consider the total length ofDCQN. In this case, we denote the sum of three ladders

by s11 + s12. Next we consider the non vertical ladder case KLMI, and denote the sum of the three

ladders by s21 + s22. We want to show that if we are given h1 = CD, h0 = GH and EF = h2, for

any (fixed) non-vertical scenario KLMI, we can always find a vertical scenario DCQN such that

s11 + s12 < s21 + s22 or equivalently,

s21 − s11 > s12 − s22. (21)

We note that the x coordinate of M should be in the range of [0, d2]. By using a dynamic geometry

software, we make the following observations:
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• The inequality (21) holds obviously if Q =M = G, see Figure 3 below:

Figure 3. A special case.

• Consider Figure 2(a), given any fixed non-vertical scenario KLMI,we move the point Q so

that Q,M and E are colinear, then N = I and we have the scenario of Figure 2(b). In other

words, we have

s12 − s22 = (GQ+QM)−GM (22)

when considering the triangle GQM .

• We note

s21 = KL+ LG > DC + CG = s11, (23)

by applying the triangular inequalities on the triangles KCD and CLG respectively. We claim

that the difference, s21 − s11, is always larger than the difference, s12 − s22 since DH < HF and

CD < EF.Other cases can be proved analogously. In other words, we have s21−s11 > s12−s22 or

s21 + s22 > s11 + s12.

2.5 Optimizing the slope of the middle ladder

It is straightforward, when using a computer algebra system, to evaluate the lengths si at the optimal

placements x∗i (m) of the outside ladders. While the resulting expression for

(total length)(m) = (s1 ◦ x∗1)(m) + (s2 ◦ x∗2)(m) (24)

is no longer amenable to symbolic analysis without any further innovations, it is, for fixed numerical

parameter values di, hi a simple scalar function of a single real variable m, and it is straightforward to

minimize it numerically. It is instructive to inspect animations of any of the above that vary any one

of the parameters above. We summarize the steps of how we use MAPLE for computation as follows:

1. Solve
∂si
∂xi

= 0 for xi:

(a) xi is the root of a polynomial of m of degree 4.

(b) x1 is a function of m, d1, h1 and h0.
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(c) x2 is a function of m, d2, h2 and h0.

2. Substitute all data (hi, di) into xi(m) to get x∗i (m) : For any given slope of the middle slope,

we get the critical points for x∗i (m).

(a) Substitute all numerical data and x∗i (m) into si and plot si(x
∗
i (m)).

(b) We consider the graph of s1+ s2; note the graph of s1+ s2 gives us a conjecture where we

should use left or right vertical ladder, see MAPLE worksheets in [10] and [11] respec-

tively.

3. Steps of finding the optimal solution:

(a) Determine if we should use left vertical or right vertical.

(b) If it is left vertical, the slope of middle ladder m is equal to its maximum, mmax.

(c) If it is right vertical, the slope of the middle ladder m is equal to its minimum, mmin.

4. For the left vertical case (see Example 1), since m = mmax, we know x1 = d1.To figure out

x2,we substitute all data and m = mmax into s2, and plot the function s2. If s2 is decreasing

with respect to x2, then the minimum happens at x2 = x2max. Otherwise, we find the critical

point x2 by using
∂s2
∂x2

= 0.

5. For the right vertical case (see Example 2), since m = mmin, we know x2 = d2.To figure out

x1, we substitute all data and m = mmin into s1, and plot the function s1. If s1 is increasing

with respect to x1, then the minimum happens at x1 = x1min. Otherwise, we find the critical

point x1 by using
∂s1
∂x1

= 0.

Example 1 (We refer to Figure 1.) We are given a set of numerical data for the heights of three

respective ladders and the widths between two ladders. In this case, we let h1 =
165

100
, h2 =

225

100
, h0 =

295

100
, d1 = −

205

100
and d2 =

70

100
. We shall minimize the total length of PBCQ.

The detailed computations can be found in the MAPLE worksheet [10]. We first note the function

s1 and s2 as follows:

1. When we substitute the given numeric values for h1, h2, h0, d1 and d2 into s1, and s2 respec-

219



The Electronic Journal of Mathematics and Technology, Volume 4, Number 3, ISSN 1933-2823

tively. With the help of MAPLE, we have s1 and s2 as functions of two variables:

s1 =

√√√√√√√√
(1 +m2)

(
−13x1
10
− 2419
400

)2
(
mx1 −

41

20
m+

33

20

)2 +

√√√√√√√√
(x21 +

41

10
x1 +

277

40
)

(
mx1 +

59

20

)2
(
mx1 −

41

20
m+

33

20

)2 , and (25)

s2 =

√√√√√√√√
(1 +m2)

(
−7x2
10
− 413
200

)2
(
mx2 −

7

10
m+

9

4

)2 +

√√√√√√√√
(x21 +

7

5
x2 +

2221

400
)

(
mx2 +

59

20

)2
(
mx1 −

7

10
m+

9

4

)2 (26)

2. We follow the steps layed out in Section 2.5. We set
∂s1
∂x1

= 0,
∂s2
∂x2

= 0, and properly select

the respective critical points x∗1(m) and x∗2(m). We next sketch the graphs (numerically) of

s1(x
∗
1(m)), s2(x

∗
2(m)) and s1(x

∗
1(m)) + s2(x

∗
2(m)) in blue, red and black respectively below:

Figure 4. Example 1.

Our analysis confirms our finding from the picture above that the minimum of s1(x
∗
1(m)) +

s2(x
∗
2(m)) occurs when m is at its maximum. Or equivalently, when the left ladder is verti-

cal. In this case, we have B = E, and we can reduce s2 to be a function of x2. Applying
ds2
dx2

= 0, we find the minimum for s2 is at x2 = 1.721233899 and we find C = (ξ2η2) =
(0.296843175, 3.138242015). The the shortest total length for PBCQ is about 7.875313261.The
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diagram can be seen below:

Figure 5. Optimal solution for Example 1

Example 2 Consider the following three ladders-walls problem, where the heights of three walls are

given as follows: h1 =
75

100
, h0 =

37

20
, and h2 =

53

40
respectively, the width between h1 and h0 (which

we call it d1) is
6

5
, and the width between h0 and h2 (which we call it d2) is

151

200
.

The detailed computations can be found in the MAPLE worksheet [11]. We follow the strategy

described in Section 2.5, and plot the s1(x
∗
1(m)), s2(x

∗
2(m)) and s1(x

∗
1(m)) + s2(x

∗
2(m)) in blue, red

and black respectively in Figure 6 below:

Figure 6. Example 2
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We follow the steps described in Section 2.5. The optimal solution for the shortest total length for

s1 + s2 in this case is at m = mmin or we have right vertical ladder. We also see that MAPLE

worskheet [11] that the function s1(x1(mmin) is an increasing function of x1 in [x1min, d1], thus the

optimal solution for the shortest total length for s1 + s2 is at x1 = x1min and x2 = d2 respectively,

and the optimal solution is 4.982393946. We note that this is a special case where middle ladder DE
touches the left outside ladder PE at the tip of the middle wall E, see Figure 7 below.

Figure 7. Optimal solution for Example 2

2.6 When will the second ladder touch the top of the middle wall?

In the two ladders problem discussed in [2], author describes a condition where one ladder has to be

vertical, whose length is exactly the height of the taller wall; this leads to the second ladder touching

the tips of both walls. For example, let us consider the Figure 8 below by considering two walls AB
and EL. We denote the heights of AB and EL as h1 and h0 respectively. We assume h1 < h0, and

denote the width BL as d. Then if

d < (h0 − h1)

√(
h0
h1

)2
− 1, (27)

as described in [2], then we need to place one vertical ladder on EL to achieve the optimal solution.

In other words, we have two ladders EL and EF which touch the tips of two walls, EL and AB,
respectively. Consider the Figure 8 below again for three ladders-walls problem; the three walls

are AB,EL and HI respectively. We consider two cases here, one is CEHI, where three ladders

CE,EH and HI are connected at the tips of three walls, AB,EL and HI, respectively. The second

case is FGHI, where the second ladder GH is not connected at the tip of EL. We demonstrate that

the condition (27) cannot be used on both widths BL and LI in three ladders-walls problem, it is
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sufficient if we can demonstrate one example such that FG+GE < CE.

Figure 8

We fix the heights of three walls and note the followings:

1. By moving the point C to the right, we reduce the width BL. The length CE get closer to the

total length of FG+GE.

2. By moving the point C to the left, we enlarge the wide BL. For example, we let h0 =
1.358811, h1 = 0.83 and h2 = 0.95. Note that

(h0 − h1)

√(
h0
h1

)2
− 1 = 0.685451545, (28)

(h0 − h2)

√(
h0
h2

)2
− 1 = 0.4180752379 (29)

we find F = (−1.122829, 0) such that FG+GE = 1.835268 < CE = 1.8432622.

Discussions: We now describe a numerical condition where the second ladder touches the top of

the middle and one of the outside walls below. Due to the number of variables involved, we do not

expect to find a solution satisfying a symbolic inequality; instead, we describe a numerical solution

below.

1. The three ladders-walls is a right vertical case for which the second ladder connects the tops

of the middle and right walls if the following conditions are met simultaneously.

(a) s1(x1(mmin)) + s2(x2(mmin)) < s1(x1(mmax)) + s2(x2(mmax)) and

(b)
d

dx1
(s1(x1(mmin)) > 0 in [x1min, d1]. In other words, s1(x1(mmin) is an increasing func-

tion of x1 in [x1min, d1].
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2. The three ladders-walls is a left vertical case for which the second ladder connects the tops of

the middle and left walls if the following conditions are met simultaneously:

(a) s1(x1(mmax)) + s2(x2(mmax)) < s1(x1(mmin)) + s2(x2(mmin)) and

(b)
d

dx2
(s2(x2(mmax)) < 0 in [d2, x2max]. In other words, (s2(x2(mmax)) is a decreasing

function of x2 in [d2, x2max].

3 Analyze Problems Geometrically

It follows from our discussion in Section 2 above, the optimal solution for a three ladders-walls

problem occurs when one outsider ladder is vertical and it follows from Example 2 above that the

second ladder could be resting on the tops of middle and third walls. In this section, we consider

such scenario where the middle ladder resting on tops of the middle wall and one of the outside walls,

and ask where to place the vertical ladder. For example, consider the Figure 9 below, we have two

scenarios to consider, one is the total length A′AER and the other is S ′SEP. We would like to ask if

we should place the vertical ladder on AA′ or SS ′.

Figure 9

It is natural to consider the problems from geometric point of view once we know the solutions

for three ladders-walls problems lie on the boundary. We divide various scenarios into several sub-

problems. The example below shows that when h1,h0 and d1 are given, the choice of selecting the

vertical ladder on AA′ or SS ′ does depend on the width d2, and also on the height of h2.

Example 3 Consider the three ladders-walls given by the Figure 10 below: We are given the heights

of two walls h1 = GE, h0 = CA with h1 < h0, and the width between h1 and h0, denoted by

d1 = EA, is fixed. Then there exists a point F ∈ ←→AB (by dragging F along
←→
AB) such that one of the

followings is true

BC + CH +HF < DC + CG+GE or

BC + CH +HF = DC + CG+GE or

BC + CH +HF > DC + CG+GE. (30)
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In other words, the choice of selecting the vertical ladder onGF orHF depends on the width between

the wall CA and HF , and also the height of the wall HF.

Figure 10. Example 3

We first explain our constructions as follows:

Step 1. We draw the parallelogram BGKF so that FK is parallel to BG and GK is parallel to BF.
Step 2. We construct a rectangle GEDL so that GE = LD and GL = ED.
Step 3. We construct the circle such that the center is at F with radius FK and note that FK = FM.
Step 4. We construct the circle such that the center is at D with radius DL and note that DL = DN.
Step 5. We construct the circle such that the center is at H with radius HN ; this is the circle shown

in green color in Figure 10.

Step 6. We construct the circle such that the center is at H with radius HO; this is the circle shown in

red color in Figure 10.

We note

BC + CH +HF = BG+GC + CH +HF = BG+GCH +HF (31)

DC + CG+GE = DH +HC + CG+GE = DH +HCG+GE (32)

(31)-(32) yields,

(BG+HF ) +GCH − ((DH +GE) +HCG) = (BG+HF )− (DH +GE) (33)

since GCH = HCG. We note that

BG = FK (34)

since BGKF is a parallelogram We see that

GE = DL (35)
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since EGLD is rectangle. We set

FK = FM (36)

using the circle where F is center and FK is radius.

We set

DL = DN (37)

using the circle where D is center and DL is radius. It follows from (34) and (36) that

BG = FM, (38)

and it follows from (35) and (37) that

GE = DN (39)

We substitute (38) and (39) into (33) to obtain

(BG+HF )− (DH +GE) = (FM +HF )− (DH +DN)

= HM −HN = HM −HO

where we set HN = HO by using the circle (in red color) described in Step 6 . In other words, the

choice of a vertical or grounded ladder on wall h2(or HF ) of achieving shortest total length depends

if HM −HO is positive or negative:

Case 1. If HM −HO < 0 (or the green circle is inside the red circle), then (BC + CH +HF ) −
(DC + CG + GE) < 0, which means we should place the grounded ladder on the wall GE or use

HF as the vertical ladder.

Case 2. If HM −HO > 0 (or the red circle is inside the green circle), then (BC + CH +HF ) −
(DC + CG + GE) > 0, which means we should place the grounded ladder on the wall HF or use

GE as the vertical ladder.

Case 3. If HM −HO = 0, then it does not matter which way we place the grounded ladder, the total

length will be the same.

Remark: In the Example 3 above, if we move h2 toward h0 (or move HF toward CA), then the

three ladders-walls problem is reduced to the two ladders-walls whose solution is consistent with the

one described in [2].

The next Example shows that if we fix the heights of the walls h1 and h0, we further fix the widths

of d1 and d2. Then we can determine the height of h2 when choosing the vertical ladder on h1 or h2.

Example 4 Consider the three ladders-walls given in Figure 10: We are given the heights of two

walls h1 = GE, h0 = CA with h1 < h0, and the widths d1 = EA and d2 = AF are fixed. Then we

can find the height for the third wall h2 = HF < h0 (by dragging D) so that one of the followings is

true

BC + CH +HF < DC + CG+GE or

BC + CH +HF = DC + CG+GE or

BC + CH +HF > DC + CG+GE (40)

By dragging the point D on from Figure 10 (see [8] in the section of Supplemental Electronic Mate-

rials), we see three possibilities of HM −HO > 0, HM −HO = 0 and HM −HO < 0.
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The next example shows how we can achieve the equality in equation (40). In particular, given the

heights of two walls h1 and h0 with h1 < h0; we fix widths d1, we demonstrate a constructive way of

determing the width d2, between the walls h0 and h2, such that the total length of placing the vertical

ladder on either outside wall is the same.

Example 5 Consider the following Figure 11, whre the heights of three walls, DB, CA and LM are

given, and we fix the distance (d1) between the wall DB and the wall CA, then the distance (d2)
between CA and LM can be determined so that

EC + CL+ LM = NC + CD +DB. (41)

Figure 11. Example 5

Step1: We draw the line
←→
CD and find the intersection between

←→
AB and

←→
CD, which we label it E.

Step 2: We draw a perpendicular segment EF to
←−→
AB at E; next we draw a line that is passing

through F and parallel to
←→
AB. We call such line LF .

Step 3. We use E as the center and FE as the radius to draw a circle, which gives us the point G,

lying on the line
←→
AB and GE = EF.

Step 4. We use D as the center and DG as the radius to draw the circle, which gives us the point H,

lying on the line
←→
DB and note that DH = DG. Also, we get the intersection between the circle and

the line LF (from Step 2), which we denote the point by K.
Step 5. We connect KB and construct the line that is passing through C and is parallel to KB, and

we call such line LC . Consequently, we obtain the point N which is the intersection between LC and←→
AB. Additionally, we obtain the point L which is the intersection between LC and LF .

Step 6. Finally, we draw the line passing through L and is perpendicular to
←→
AB to get the point M.

We shall claim that the construction process described above yields

EC + CL+ LM = NC + CD +DB. (42)

We note

(EC + CL+ LM)− (NC + CD +DB) (43)

= [(ED +DC) + CL+ LM ]− [(NL+ LC) + CD +DB] (44)

= (ED + LM)− (NL+DB) . (45)
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However, ED + LM = ED +GE = DG and NL +DB = KB +DB = HB + BD = HD. We

refer readers to [9] for detailed construction and demonstration.

The next example demonstrates a special case of the Example 5, which shows the shortest total

length will depend on the widths between two ladders.

Example 6 Consider the following three ladders-walls problem in Figure 12, whereEP = ER, SS ′ >
AA′, and A′E ′ > E ′S ′, we shall prove

RE + EA+ AA′ > PE + ES + SS ′. (46)

Figure 12

We first add AU so that AU is parallel to PR; next we label the intersection between SS ′and AU by

V ; we draw a line passing through V, parallel to ER and intersects PR at W as shown in Figure 13.

We note that

RE + EA+ AA′ − PE − ES − SS ′

= EU + V S ′ − ES − SS ′

= SU − SV > 0, (47)

when we consider the right triangle SUV.

Figure 13

We note that this provides a solution to the special case when PE = ER. The solution suggests that

we should use grounded ladder on shorter wall AA′ in this case.
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Remark: We further note that if we decrease the length of the wall SS ′ or let S → U, the length

of SS ′will get close to the length of the wall AA′. In such case, we can see that SU → SV ; in other

words, RE + EA + AA′ − PE − ES − SS ′ → 0. This consists with what we expected that when

wall h1 = h2, the ground or vertical ladder can be from either end.

3.1 Extension to more ladders and walls

We introduce some terminologies:

• We only consider the n−ladders and n−walls system, denoted by {Li,Wi}ni=1, when the num-

ber of walls is the same as the number of ladders. When no confusion occurs, we simply write

{Li}ni=1 or call it a n-ladder system. For example, a four-ladder system could look like the

following Figure 14.

Figure 14

In this case, the ladder L1 = EP is grounded (where P is obtained by extending EA to the

ground level).

• We further note that in the four-ladder system in Figure 14, L1 (EP ) and L2 (ED) have to

touch the point E; in other words, EP can not go over the point E, otherwise, it will not reach

the optimal case. Similar conclusion can be drawn for n-ladder system.
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• For n = 7, a seven-ladder system could look like the one in Figure 15 below:

Figure 15

To find the shortest total length for the seven ladders-walls described in Figure 15.

Step 1. We only need to determine if we place the vertical on the left wall AA′ or the right wall II ′

by comparing AA′ + IQ and II ′ + AP .

Step 2. Assume AA′ + IQ < II ′ + AP. We choose L1 = AA′ to be vertical and L2 = AE,L3 =
ED,L4 = DF,L5 = FG,L6 = GH , and L7 = HQ,which is grounded. The solution toAA′+IQ >
II ′ + AP can be derived analogously.

4 Conclusion

Solving the three ladders-walls was first explored with the help of a dynamic geometry system ([Class-

Pad] in this case), and it was surprising to conjecture that the optimal solution exist near the boundary,

either using a left vertical or right vertical ladder. After extensive computations with the help of a

CAS, the optimal solutions turn out to be consistent with what we had conjectured when dynamic

geometry software was used. We further explore the shortest total length for special cases, using dy-

namic geometry approach, by varying the given conditions on the heights of the walls or the widths

between two consecutive walls in Section 3. Each example mentioned in Section 3 can be a separate

problem that is accessible to even middle school students. For special cases of three ladders-walls

problems discussed in Section 3, finding solutions geometrically is much more preferable than using

a CAS for computation. Finally, we extend the results to finitely many ladders-walls systems by mak-

ing some simple observations. In summary, the ladders-walls problems are interesting for students to

explore as project based activities.
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